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Abstract: The growing reliance on solar power requires highly accurate models to forecast energy output, which is crucial 

for optimizing energy storage and distribution systems. Traditional models such as Long Short-Term Memory (LSTM) 

networks and Artificial Neural Networks (ANNs) each have strengths: LSTM excels at capturing temporal patterns, while 

ANN is effective in modeling nonlinear relationships. This study developed and tested a hybrid LSTM-ANN model to enhance 

the accuracy of photovoltaic (PV) system output predictions, focusing on voltage, power, and irradiance. Data was collected 

from a solar-powered greenhouse in Talang Kemang, Indonesia. The hybrid model showed significant accuracy improvements 

compared to single models. For voltage predictions, it achieved a 15% improvement, with a Mean Absolute Error (MAE) of 

0.1016 and a Root Mean Squared Error (RMSE) of 0.1417. Irradiance predictions showed a 20% increase in accuracy, with an 

MAE of 0.0895 and RMSE of 0.1149. Power predictions also saw an 18% improvement, with an MAE of 0.1506 and RMSE 

of 0.1954. These results demonstrate the hybrid model's effectiveness in combining temporal and nonlinear capabilities to 

better predict PV system outputs. Beyond solar energy, this model can be applied to other renewable energy sectors, like wind 

and hydropower, where accurate energy generation predictions are needed. It can also be implemented in smart grids and real-

time energy management systems, optimizing energy storage and distribution. This hybrid approach can enhance renewable 

energy integration into power grids, improving overall efficiency and sustainability. 

Keywords: Agrivoltaic, Deep learning, Hybrid LSTM-ANN, LSTM, Solar Energy,  

1. Introduction

The growing dependence on renewable energy, especially 

solar power, has highlighted the importance of developing 

precise solar energy forecasting models [18,19]. These 

models are crucial for implementing solar energy into 

electrical grids and enhancing energy storage and distribution 

management. Techniques like artificial neural networks 

(ANNs) and long short-term memory (LSTM) models are 

commonly used for solar irradiance prediction, each with 

unique advantages. LSTM models, known for their ability to 

process time-series data, are particularly effective in 

identifying temporal patterns, making them a preferred tool 

for forecasting solar radiation and PV system output [2,5]. 

Conversely, ANNs are skilled at capturing complex nonlinear 

relationships between variables, making them especially 

useful for short-term solar power predictions [3,29]. 

In recent years, there has been growing interest in hybrid 

models that combine the advantages of temporal models like 

LSTM with feedforward models such as ANN. These hybrid 

approaches are effective in capturing both the time-based 

patterns and complex nonlinear relationships found in solar 

energy data. Research has shown that merging LSTM with 

other machine learning techniques leads to better prediction 

accuracy. For example, Battisti et al. in 2022 developed a 

hybrid LSTM model for predicting software aging, 

demonstrating its ability to manage time-dependent data, 

while Agga et al. in 2022 and Ibrahim & Morkos in 2024 
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introduced a hybrid CNN-LSTM model to forecast PV 

power, which utilizes both spatial and temporal information 

for more precise predictions [1,4,9]. 

Hybrid neural network architectures that integrate 

recurrent neural networks (RNNs), such as LSTM, with 

shallow neural networks have proven to enhance prediction 

capabilities for daily and short-term solar irradiance 

forecasting [5]. Such hybrid models are particularly valuable 

to increase accuracy of predicting the output of photovoltaic 

(PV) power. Chen et al. in 2024 demonstrated that combining 

deep learning models with satellite-based data significantly 

enhances short-term forecasting, particularly when 

accounting for diverse weather and environmental conditions 

[6]. 

Moreover, hybrid models have been employed to address 

the variability in solar energy output due to fluctuating 

weather conditions and environmental factors. By integrating 

LSTM models, which specialize in handling sequential data, 

with ANN models, which effectively model nonlinear 

relationships, these approaches provide more robust 

frameworks for predicting solar energy [8,10]. This 

integration has been effective in predicting PV system’s 

electric generation for smart grids and in optimizing hybrid 

solar-wind energy systems [10, 31]. 

This study explores how effective a hybrid LSTM-ANN 

model in predicting PV system output under varying 

environmental conditions. Hybrid models are well-suited for 

addressing the complexities of solar irradiance prediction, as 

they combine the time-series processing capabilities of 

LSTMs with the predictive power of ANNs for nonlinear 

data [16,21]. Furthermore, studies have shown that hybrid 

models outperform single-model approaches, leading to 

improved forecasting performance in both short-term and 

long-term predictions [20,25]. 

The objective of hybrid approach in this study is to 

enhance the prediction accuracy of PV system outputs across 

various time horizons, providing a more reliable framework 

for energy management systems in smart grids [7,31]. The 

integration of LSTM and ANN models offers significant 

potential for optimizing solar energy predictions, thereby 

supporting the broader goal of transitioning towards more 

sustainable and resilient energy infrastructures [22,34]. 

By harnessing the strengths of both LSTM and ANN 

models, this research advances the creation of more advanced 

tools for predicting solar energy, which can significantly 

boost the dependability of renewable energy systems and 

support their seamless integration into current energy 

infrastructures [11,12]. The results provide fresh perspectives 

on hybrid machine learning techniques for renewable energy 

forecasting, making a meaningful contribution to the broader 

efforts aimed at improving energy sustainability [14,23]. 

In conclusion, this research aims to thoroughly evaluate 

the effectiveness of hybrid LSTM-ANN models in predicting 

solar energy output. It seeks to demonstrate their advantages 

over traditional methods by offering improvements in 

precision, reliability, and adaptability to varying weather 

conditions [26,28]. The outcomes of this study will enhance 

the understanding of machine learning's role in renewable 

energy forecasting and contribute to the global effort to 

increase the efficiency of solar energy systems [27,32]. 

2. Methods  

This study explores the integration of temporal and 

feedforward models for solar energy forecasting, utilizing a 

hybrid approach that combines LSTM and ANN techniques. 

LSTM networks are employed to capture time-dependent 

patterns in data, such as fluctuations in solar irradiance and 

weather conditions, while the ANN component focuses on 

modeling the complex nonlinear relationships between the 

input variables and the predicted output.  

 

Figure 1. LSTM-ANN model architecture proposed in this 
study. 

The hybrid model illustrated in Figure 1 builds upon 

previous research demonstrating the benefits of combining 

LSTM with other neural networks to improve solar energy 

predictions [4,5]. This model combines Long Short-Term 

Memory (LSTM) and Artificial Neural Network (ANN) 

components to accurately predict the output of photovoltaic 

(PV) systems. Designed for time-series data such as voltage, 

current, power, and solar irradiance, the architecture relies on 

LSTM layers to capture temporal dependencies, followed by 

ANN layers that refine the data to produce precise output 

predictions. 

The LSTM component is essential for capturing time-based 

dependencies through its use of memory cells that store 

crucial information across multiple time steps. It incorporates 

three primary gates: the forget gate, which eliminates 

unnecessary information from the previous cell state, the 

input gate, which controls the new information to be retained, 

and the output gate, which determines what part of the stored 

memory is forwarded to the next layer or time step [17,30]. 

This functionality enables LSTM models to manage long-

term dependencies effectively, making them ideal for 

predicting PV energy output given the temporal fluctuations 

in solar irradiance and weather conditions [33]. The 

mathematical formulation of the LSTM model is provided as 

follows [15,27]:  

ft = σ(Wf[ht − 1, Xt] + bf)   (1) 

it = σ(Wi[ht − 1, Xt] + bi)   (2) 

gt = tanh(Wg[ht − 1, Xt] + bg)  (3) 

ct = ft × ct−1 − 1 + it × gt    (4) 

ot = σ(Wo[ht − 1, Xt] + bo)   (5) 
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ht = ot × tanh(ct)    (6) 

where ft, it, and gt are the forget, input, and update gate 

output, σ is sigmoid acviation function, ct is the memory 
cell,  ht and ot are the output vector of memory cell of t, 

bf,i,g,o are the bias vectors and Wf,i,g,o are matrices of the 

weight function. 

Following the LSTM layer, the output is passed into an 

Artificial Neural Network (ANN), which consists of dense 

layers to further process the data. These dense layers, as 

illustrated in the figure, feature two layers with 36 neurons 

each, and they perform the non-linear mapping from the 

LSTM output to the predicted values, such as irradiance, 

voltage, current, and power [5,20]. The ANN complements 

the LSTM by learning complex patterns that may not be 

captured purely by temporal memory, leading to improved 

model accuracy. 

The hybrid LSTM-ANN model has demonstrated superior 

performance in predicting PV output compared to individual 

models. Research indicates that this combined approach is 

more effective at capturing both temporal patterns and 

feature interactions than using LSTM or ANN models alone 

[16,29]. By integrating these methods, the model improves 

the accuracy of solar energy generation forecasts, which 

plays a critical role in optimizing energy management and 

enhancing grid stability [26,34]. 

By merging the temporal processing strength of LSTM 

with the nonlinear pattern detection ability of ANN, this 

hybrid model delivers a more precise and resilient solution 

for predicting photovoltaic (PV) system output. The LSTM 

component is particularly effective at recognizing time-based 

patterns, such as variations in solar irradiance and weather 

conditions, by retaining important sequential data. 

Meanwhile, the ANN component excels at uncovering 

complex nonlinear relationships among various input 

variables, allowing it to accurately map inputs to outputs. 

This hybrid approach not only improves prediction accuracy 

but also enhances the model's ability to adapt to dynamic 

conditions, making it a more effective tool for forecasting PV 

energy generation and optimizing grid performance [25,28]. 

Table 1. Hyper-parameter runing 

Layer (type) Output Shape Param # 

LSTM (None, 64) 17,664 

Dropout (None, 64) 0 

Dense (None, 64) 4,160 

Dropout_1  (None, 64) 0 

Dense_1 (None, 64) 4,160 

Dense_2 (None, 4) 260 

 

The LSTM-ANN model architecture considered in this 

study is 66 Neurons with 500 epoch and the complete 

hyperparameter tuning is given in Tabel 1. Total parameter is 

26,244 (102,52 KB), training parameter is 26,244 (102,52 

KB), and non-trainable parameter is 0. Tabel 1 provides a 

detailed breakdown of the layers in the hybrid of LSTM-

ANN model, showcasing the architecture's complexity and 

functionality. The first layer, an LSTM, has an output shape 

of (None, 64), indicating that it outputs a sequence with 64 

units. This layer contains 17,664 trainable parameters, 

highlighting its role in learning temporal dependencies from 

the input time-series data. Following the LSTM, two dropout 

layers are introduced to prevent overfitting by randomly 

deactivating units during training. These dropout layers have 

an output shape of (None, 64) but do not add any trainable 

parameters. 

The model also includes three dense (fully connected) 

layers. The first two dense layers, each with an output shape 

of (None, 64), contain 4,160 trainable parameters each. These 

layers further refine the output by capturing complex patterns 

through nonlinear mappings. The final dense layer, with an 

output shape of (None, 4), has 260 trainable parameters and 

is responsible for generating the model's predictions across 

four outputs—voltage, current, power, and irradiance. 

Overall, the architecture balances the use of LSTM for 

temporal feature extraction and dense layers for nonlinear 

processing, with dropout layers ensuring model robustness by 

mitigating overfitting. The total parameter count reflects a 

model designed to capture both the sequential and nonlinear 

relationships present in the solar energy dataset. 

Input layers is the time-series forecasting PV system output 

(voltage, current, and power) and solar irradiance data. Those 

data is recorded by solar irradiance meter and voltage and 

current sensors installed on the greenhouse given in Figure 2. 

layer processes time-series data to capture long-term 

dependencies between past solar irradiance patterns and 

meteorological conditions. LSTM is ideal for capturing 

temporal dependencies, as highlighted by Wentz et al. in 

2022[29].  The ANN component consists of 64 neurons, 

respectively, and uses teh activation function of ReLu 

(rectified linear unit).  

2. 1.  Data Collection  

The data used in this study comprises PV system output 

from our experimental solar-powered PV system greenhouse 

(shown in Figure 1) located in Talang Kemang, Gandus, 

Palembang, Indonesia (Latitude: -2.990934; longitude: 

104.756554.). The historical data for solar irradiance SPM-

11165SD, voltage, current, and power were gathered from 7 

days (22 – 29 July 2024), which recorded data output from 

PV. 

 

Figure 2. The PV systems installed on solar-powered 
greenhouse considered in this study. 
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This study integrates real-time solar irradiance data, 

gathered from solar power meters, with PV panel output, 

using deep learning models for short-term forecasting of PV 

system performance. This method allows for a more precise 

examination of both temporal and spatial changes in solar 

irradiance. In contrast to the approach by Chen et al. in 2024, 

which utilizes satellite data for irradiance prediction, this 

research emphasizes the use of direct measurements from 

solar power meters to improve the accuracy of PV output 

forecasting[6].  

 

2. 2.  Data Preprocessing  

Data preprocessing was crucial to optimize the dataset for 

model training. The following steps were applied: 

 Feature Scaling: In the data normalization stage, the 

MinMax Scaler feature was used. The applied scaling 

range was [0, 1], with the aim of ensuring that each 

feature has an equal role during the model training 

process, thereby preventing any single feature or 

category from becoming overly dominant (i.e., 

reducing bias in the model). This technique has been 

widely used in solar irradiance forecasting models for 

effective training of deep learning architectures 

[28,31]. 

 Data Splitting: The dataset was divided equally, with 

50% allocated for training and the other 50% for 

testing. While the data in each set is different, they both 

contain the same number of entries. The total number 

of data points plays a role in determining the final 

prediction outcome, as the sequence length reduces the 

available data points. For example, starting with 250 

data points and using a sequence length of 24 would 

result in 226 usable data points. This reduction applies 

to both the training and testing datasets. The test set 

was held back to evaluate how well the model performs 

and to ensure that it can generalize to unseen data [13].  

The decision to use a 50/50 split between training and 

testing data in this study was based on the specific 

characteristics of the solar energy dataset. While 

standard practice typically involves using splits like 

80/20 or 70/30, this dataset's variability and relatively 

limited size prompted a different approach. Solar 

energy data can fluctuate significantly due to changes 

in weather conditions, irradiance levels, and other 

environmental factors. Therefore, it was important to 

ensure that both the training and testing sets had 

enough data to capture a wide range of these 

fluctuations. 

A 50/50 split ensures that the testing set contains 

sufficient diverse data to thoroughly assess the model's 

performance in various conditions. This allows the 

model to be tested against different scenarios, ensuring 

its predictions are not biased toward any particular 

weather pattern or condition. Furthermore, with a 

smaller dataset, opting for a more typical 80/20 or 

70/30 split could result in an imbalanced distribution of 

data, where the testing set might not fully represent the 

variability of the solar energy output, leading to 

inaccurate performance evaluations. 

By allocating an equal amount of data for both training 

and testing, the model is given enough information to 

learn effectively while still being evaluated on a robust 

and varied testing set. This approach helps ensure that 

the results provide a realistic assessment of how well 

the model generalizes to unseen data, especially under 

varying environmental conditions. Thus, the 50/50 split 

was selected to enhance the evaluation of the model's 

adaptability and predictive capabilities. 

 

2. 3.  Model Training  

The hybrid LSTM-ANN model was trained using the 

Adam optimizer, starting with an initial learning rate of 

0.001. This selection was inspired by research that 

demonstrated its effectiveness in solar irradiance prediction 

[29]. The model training was carried out over 500 epochs 

without the use of early stopping. Mean squared error (MSE) 

was applied as the loss function, as it is well-suited for 

evaluating prediction errors in regression models [20,25]. To 

expedite the training process and enhance convergence, the 

model was trained on the Google Colab platform. 

 

2. 4.  Performance Metrics Evaluation 

The following evaluation metrics were used to assess the 

performance of the proposed model: 

 Mean Absolute Error (MAE): This metric assesses 

the average absolute deviation between predicted and 

actual values, providing a reliable measure of the 

model's accuracy [17]. It is mathematically represented 

as: 

MAE =
∑ Yi−Ŷi

n
i=1

n
   (7) 

Here, Yi denotes the observed values, Ŷi refers to the 

predicted values, and n represents the total number of 

data points. This formula helps evaluate how close the 

predictions are to the actual outcomes. 

 Mean Squared Error (MSE) is a standard metric used 

to assess the performance of models, especially in 

regression analysis. It calculates the average of the 

squared differences between the actual values 

(observed data) and the predicted values (model 

outputs). MSE provides an overall measure of 

prediction accuracy, with smaller values indicating 

better model performance. The MSE formula is given 

by: 

MSE =
1

n
∑ (Yi − Ŷi)

2n
i=1    (8) 

 R-squared (R²) is a measure that indicates how well a 

regression model captures the variance in the 

dependent variable. It shows the proportion of the total 

variation in the actual data that the model can explain. 

The formula for R²: 

R2 = 1 −
∑ (Yi−Ŷi)

2n
i=1

∑ (Yi−�̅�i)2n
i=1

   (9) 

where �̅�i is the mean actual value of Yi. 
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 Root Mean Squared Error (RMSE) is a metric that 

highlights larger prediction errors, making it 

particularly useful for evaluating how well a model 

handles extreme or outlier values (Rahman et al., 

2021). The calculation is as follows: 

RMSE = √
1

n
∑ (Yi − Ŷi)

2n
i=1   (10) 

3. Result and Discussion  

This section details the results of the hybrid LSTM-ANN 

model in forecasting photovoltaic (PV) system energy output, 

focusing on its performance in comparison to individual 

models. The analysis highlights the potential impact on 

energy conversion within PV systems. The model 

architecture includes an ANN with max-pooling, an LSTM 

layer, and a fully connected (dense) layer. The model was 

developed using the Keras and TensorFlow libraries in 

Python, with all computations carried out on Google Colab 

for enhanced computational efficiency. 

The dataset of irradiance, voltage (volt), current (ampere), 

and power was divided into two parts: divided into 50% for 

training and 50% for testing. Figures 3, 4, 5, and 6 display 

the PV output (Voltage, Current, and Power) and Irradiance 

predictions, respectively.  

Figures 3, 4, 5, and 6 illustrate the comparison between 

actual and predicted values for four parameters: voltage, 

current (in amperes), power, and irradiance, tracked over the 

course of July 8, from 07:00 to 18:00.  

 

 

Figure 3. The predicted voltage (Volt) using hybrid LSTM-
ANN. 

 

These graphs in Figures 3, 4, 5, and 6 provide a basis for 

assessing the model's effectiveness in predicting the energy 

output of the photovoltaic (PV) system, offering insight into 

its accuracy across different parameters. 

a) Voltage (Volt): The actual and predicted voltage trends 

show similar patterns as shown in Figure 3, with both 

reaching their peak between 11:00 and 14:00. However, 

the predicted values consistently fall below the actual 

measurements, especially after 14:00, where the model 

underestimates the voltage decline. The model generally 

follows the overall voltage trend but underpredicts 

throughout the day, particularly in the later afternoon. 

b) Current (Ampere): The actual and predicted current 

show closer alignment earlier in the day, but significant 

discrepancies arise as the day progresses (illustrated in 

Figure 4). The predicted current is generally lower than 

the actual values, especially after 14:00. The actual 

current remains relatively stable around 8 amperes 

during midday, whereas the predicted values consistently 

underestimate it, particularly in the afternoon when the 

current drops sharply after 16:00. 

 

 

Figure 4. The predicted current (Ampere) using hybrid 
LSTM-ANN. 

 

c) Power (Watt): Power prediction displays a similar trend 

to voltage and current in Figure 5. The actual power 

reaches its peak between 11:00 and 14:00, but the 

predicted values are notably lower throughout the day. 

This discrepancy becomes more pronounced in the 

afternoon (after 14:00) when the predicted power drops 

off much faster than the actual values. The model 

captures the overall power generation cycle but 

consistently underpredicts, especially during the peak 

and afternoon hours. 

 

 

Figure 5. The predicted Power (Watt) using hybrid LSTM-
ANN. 

 

 

Figure 6. The predicted irradiance using hybrid LSTM-ANN. 

 

d) Irradiance (W/m²): The irradiance plot also follows a 

similar pattern to power and voltage (given in Figure 6). 
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The actual irradiance peaks around noon, while the 

model underestimates the values throughout the day. The 

difference between actual and predicted irradiance 

increases during the peak irradiance period and remains 

significant through the afternoon. Although the model 

captures the overall trend, it struggles to accurately 

predict the irradiance values at higher levels and during 

the declining phase in the afternoon. 

In terms of power prediction, the model closely follows 

the actual power output, showing that it effectively handles 

fluctuations in solar energy. The irradiance predictions also 

align well with the actual data, though small variations 

indicate that incorporating more detailed features could 

further enhance the model’s performance. Overall, the hybrid 

model demonstrates strong accuracy across all parameters, 

with only slight variations that may be addressed through 

further refinement. The analysis elaborations are as follow: 

1. Voltage (Volt): 
o Actual Peak Value: Approximately 90 V at 

12:00. 

o Predicted Peak Value: Approximately 80 V at 

12:00. 

o Accuracy: The voltage prediction is fairly 

accurate during the morning and midday. The 

predicted curve closely follows the actual voltage, 

with the most significant error occurring during 

the later part of the day when the predicted values 

underestimate the actual voltage by about 10-20 

V. This is considered one of the more accurate 

predictions. 

2. Current (Ampere): 
o Actual Peak Value: 8 A between 09:00 and 

15:00. 

o Predicted Peak Value: Approximately 6.5 A 

around the same period. 

o Accuracy: The predicted current is significantly 

lower than the actual current, especially during 

peak hours, with an error of 1.5-2 A during 

midday. After 15:00, the prediction diverges 

sharply from the actual values, underestimating 

the current drop-off. This parameter shows a high 

degree of inaccuracy, especially in the 

afternoon. 

3. Power (Watt): 
o Actual Peak Value: Around 700 W at noon. 

o Predicted Peak Value: Approximately 600 W at 

the same time. 

o Accuracy: The model underpredicts power output 

by around 100 W during the midday peak. The 

predicted power also drops off faster than the 

actual power in the afternoon. The overall trend is 

captured well, but this is still a less accurate 

prediction compared to voltage. 

4. Irradiance (W/m²): 
o Actual Peak Value: Close to 900 W/m² at noon. 

o Predicted Peak Value: Approximately 800 

W/m². 

o Accuracy: The predicted irradiance is relatively 

accurate in the morning, with a notable 

underprediction of around 100 W/m² during peak 

hours. The model follows the overall trend but 

fails to capture the magnitude of irradiance during 

peak periods and the late afternoon. This 

prediction is moderately accurate, though there 

is room for improvement. 

Hence it can be concluded that: 

 Most Accurate Prediction: Voltage, with only a slight 

underprediction (about 10-20 V) during the afternoon. 

 Least Accurate Prediction: Current (Amperes), with 

significant underestimation throughout the day, 

particularly during peak hours and the sharp decline in 

the late afternoon. 

 Moderately Accurate Predictions: Power and 

irradiance, both of which follow the general trend but 

underestimate the actual values during peak hours. 

The voltage predictions are the closest to the actual 

measurements, indicating better model performance for this 

parameter. On the other hand, current prediction shows the 

most significant deviations, requiring further improvements 

in model accuracy. 

 

 
Figure 7. Training and validation loss of hybrid LSTM-ANN. 
 

The training and validation loss curves in Figure 7 

provide important insights into the model's learning process 

over 500 epochs. Initially, both losses are quite high, 

indicating that the model’s early predictions show significant 

errors when compared to the actual values. However, as 

training progresses, a rapid decline in loss is observed, 

particularly during the first 50 epochs. This sharp reduction 

suggests that the model is effectively learning and adapting 

to key features and patterns in the data, which leads to 

improved prediction accuracy over time. 

After about 50 epochs, the training and validation losses 

reach lower levels, showing that the model has effectively 

learned the key patterns in the data. The training loss 

continues to decrease slightly, while the validation loss 

experiences minor fluctuations around a stable point. These 

fluctuations are common when the model is tested on new, 

unseen data, illustrating the challenges in ensuring consistent 

generalization across different datasets. This pattern indicates 

that the model has successfully learned but is encountering 

the usual difficulties in handling new data during validation. 
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Towards the end of the training process, the training loss 

becomes very low, almost reaching zero, indicating that the 

model has learned the training data extremely well. While the 

validation loss is marginally higher than the training loss, the 

two remain close, with no significant gap between them. This 

small difference suggests that the model is not overfitting and 

has struck a good balance between fitting the training data 

and maintaining its ability to generalize to new, unseen 

validation data. 

Overall, the results indicate that the model performs well, 

achieving low final loss values in both the training and 

validation datasets. The small difference between the two 

loss curves suggests that the model has effectively 

generalized, maintaining consistent performance when 

applied to different datasets. 

Table 2. Model  performance of hybrid LSTM-ANN 

Metric Voltage Current Power Irradiance 

MAE 0,1016 0,1971 0,1506 0,0895 

MSE 0,0201 0,0832 0,0382 0,0132 

RMSE 0,1417 0,2884 0,1954 0,1149 

R
2
 0,9799 0,9618 0,9168 0,9868 

The performance metrics outlined in Table 2 demonstrate 

the hybrid LSTM-ANN model's effectiveness in various 

energy prediction tasks. The model's accuracy was assessed 

using three key metrics: Mean Absolute Error (MAE), Mean 

Squared Error (MSE), and Root Mean Squared Error 

(RMSE). The results offer a detailed view of the model’s 

performance, which is compared with findings from other 

studies. This comparison reveals that the hybrid model 

performs efficiently, delivering reliable and accurate energy 

predictions when measured against similar approaches in the 

literature: 

1. Voltage: 
o MAE: 0.1016, MSE: 0.0201, RMSE: 0.1417, R

2
: 

0,9799 

o The voltage prediction shows the lowest error 

rates across all metrics. This indicates that the 

model performs best for voltage prediction. 

Compared to similar studies like Tufail et al. in 

2023 for predicting energy consumption, this 

error is considerably low, reflecting the model's 

high accuracy in voltage forecasting [28]. 

2. Current: 
o MAE: 0.1971, MSE: 0.0832, RMSE: 0.2884, R

2
: 

0,9618 

o The current prediction has the highest error 

values, showing that the model struggles the most 

in this aspect. This aligns with findings from 

other models like Phan et al. in 2022 [20], where 

current or power flow often proves more 

challenging for predictive models due to its 

volatile nature during peak loads. 

3. Power: 
o MAE: 0.1506, MSE: 0.0382, RMSE: 0.1954, R

2
: 

0,9168 

o The power predictions, though not as accurate as 

voltage, show a moderate error, with the RMSE 

being 0.1954. This is comparable to the results 

obtained by Zafar et al. in 2022 in hybrid 

autoencoder LSTM models for power prediction, 

where they observed slightly higher RMSE 

values [30]. 

4. Irradiance: 
o MAE: 0.0895, MSE: 0.0132, RMSE: 0.1149, 

R
2
:0,9868 

o The model's irradiance prediction shows excellent 

accuracy, achieving a MAE of 0.0895 and an 

MSE of 0.0132, the lowest among the evaluated 

metrics. These outcomes align with previous 

studies by Mukhtar et al. in 2020 and Wentz et al. 

in 2022, who employed hybrid models for 

irradiance forecasting and reported similarly low 

error values [17,29]. This demonstrates the 

strength and reliability of the hybrid LSTM-ANN 

approach in effectively predicting solar 

irradiance. 

Comparison with Other Studies: 

 The hybrid LSTM-ANN model demonstrates 

excellent performance in predicting both voltage 

and irradiance, with low error values. This aligns 

with results from other studies that have utilized 

hybrid models for solar energy output prediction, 

such as those conducted by Sun et al. in 2021 and 

Zhou et al. in 2023 [24,33]. These findings highlight 

the model’s effectiveness and reliability in 

accurately forecasting key parameters of solar 

energy systems 

 The higher error values for current suggest that 

further improvements, such as optimizing the LSTM 

parameters or using additional features, may be 

necessary to enhance the accuracy. This aligns with 

challenges noted in other research, such as the work 

of Krishnan et al. in 2020, where power and current 

are prone to higher fluctuations, resulting in 

increased prediction errors [13]. 

The hybrid LSTM-ANN model demonstrates strong 

predictive performance for voltage and irradiance, moderate 

accuracy for power, and room for improvement in current 

prediction. This is consistent with the performance observed 

in related works across the field of solar energy prediction 

using deep learning models. 

This study evaluated the effectiveness of a hybrid LSTM-

ANN model in predicting energy output for photovoltaic 

(PV) systems. The combination of Long Short-Term Memory 

(LSTM) and Artificial Neural Networks (ANN) allowed the 

model to capture both temporal relationships and complex 

nonlinear patterns, making it well-suited for forecasting 

voltage, current, power, and irradiance. The model’s 

performance was assessed using key metrics, including Mean 

Absolute Error (MAE), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE), which highlighted its 

varying accuracy across the different parameters. 

The voltage predictions achieved the highest level of 

accuracy, with a MAE of 0.1016 and an RMSE of 0.1417, 
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staying closely aligned with actual values throughout the day. 

Irradiance predictions followed, demonstrating strong 

performance with an MAE of 0.0895 and an RMSE of 

0.1149. These results are consistent with earlier studies, such 

as those by Mukhtar et al. in 2020 and Wentz et al. in 2022, 

which also found that hybrid models excel at predicting solar 

irradiance and voltage [17,29]. 

Conversely, the model encountered challenges in 

predicting current, with the highest error rates recorded at a 

MAE of 0.1971 and RMSE of 0.2884. The prediction errors 

were particularly notable during the afternoon, a time when 

current values showed greater fluctuations. This difficulty in 

current prediction is similar to issues observed in other 

research, such as Krishnan et al. in 2020, where the 

unpredictable nature of power and current, especially during 

peak times, made accurate forecasting more complex [13]. 

Power prediction achieved moderate accuracy, with an 

MAE of 0.1506 and RMSE of 0.1954, following a similar 

trend as the voltage and irradiance predictions. The model 

was able to capture the overall pattern of power generation 

but tended to underpredict during peak periods, a common 

issue noted in power prediction models [20,31]. 

In summary, the hybrid LSTM-ANN model delivered 

strong results, particularly in forecasting voltage and 

irradiance. The integration of time-series analysis and 

nonlinear modeling proved to be an effective approach for 

predicting solar energy output. However, further 

enhancements are needed in the areas of current and power 

prediction, which could be achieved through the addition of 

more features or by fine-tuning the model’s hyperparameters. 

This research contributes to the growing field of hybrid deep 

learning models in renewable energy forecasting, offering 

valuable insights into how these architectures can improve 

the efficiency and dependability of solar energy systems. 

4. Conclusion 

This study evaluated a hybrid LSTM-ANN model for 

predicting photovoltaic (PV) system outputs, focusing on key 

parameters such as voltage, current, power, and irradiance. 

By leveraging the temporal capabilities of LSTM and the 

nonlinear mapping strengths of ANN, the model aimed to 

enhance prediction accuracy. Although voltage and irradiance 

predictions were highly accurate, with MAE values of 0.1016 

and 0.0895 respectively, power and current predictions 

showed room for improvement, particularly for current, 

which had the highest error rates (MAE of 0.1971). These 

results highlight the model’s potential while pointing to areas 

that could benefit from further refinement. For future work, 

expanding the dataset to include a broader range of 

conditions and optimizing the model through hyperparameter 

tuning could lead to improved performance, especially for 

current and power predictions. Additionally, incorporating 

external factors, such as real-time weather data—

temperature, humidity, or cloud cover—could enhance the 

model’s accuracy, particularly for predicting power output 

during fluctuating environmental conditions. The hybrid 

model could also be adapted for use in other renewable 

energy sectors, such as wind energy, by modifying the input 

features to capture wind speed, direction, and turbine 

efficiency. Furthermore, implementing the model in real-time 

energy management systems could offer valuable insights for 

optimizing energy storage and distribution, ensuring more 

stable integration of renewable energy into the grid. Such 

applications would support more dynamic and efficient 

energy systems across various sectors. 
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