Decreasing pH, COD and TSS of Domestic Liquid Waste Using Photocatalysis TiO2 (Titanium Dioxide)

Authors

  • Marhadi University Batanghari
  • Endi Adriansyah University Batanghari
  • Peppy Herawati University Batanghari
  • Asih Suzana University Batanghari
  • Aulia Intan Pratama University Batanghari

DOI:

https://doi.org/10.53893/ijrvocas.v3i2.201

Keywords:

Domestic Waste, Photocatalyst, Titanium Dioxide

Abstract

Domestic waste comes from households that must be treated. Based on the Minister of Environment and Forestry Regulation Number P.68/Minister  Environment and Forestry-Secretary General/2016 concerning Domestic Wastewater Quality Standards, the government has set a maximum limit for waste water that can be disposed of to the environment or receiving water bodies. includes pH, TSS and COD parameters. This is useful for overcoming the problem of environmental pollution caused by wastewater. Waste water that is not managed properly will have an impact on human health. environmental pollution is harmful to humans. Domestic sewage treatment using a titanium dioxide photocatalyst shows the results of testing the pH value on domestic waste as shown below, showing that overall the concentration of parameters has increased the pH value decrease 90% from acidic to normal with the best pH value with a value of 6.57 at a contact time of 210 minutes of mass catalyst 2.5 grams. Parameter concentration decreased TSS value from initial value of 157 mg/L to normal with the best TSS value of 94 mg/L at contact time of 210 minutes with catalyst mass of 2.5 grams. COD value at contact time of 210 minutes with a mass of 2.5 grams of catalyst with a value of 2861 mg/L. COD value affects the time and mass of the catalyst (1). a decrease of 40.1% where the TSS value meets the quality standard, and the COD value has decreased by 31%. Addition of further processing to get a better COD.

References

Adriansyah, E., Agustina, T. E., & Arita, S. (2019). Leachate Treatment of TPA Talang Gulo, Jambi City by Fenton method and adsorption. Indonesian Journal of Fundamental and Applied Chemistry, 4(1), 20–24. https://doi.org/10.24845/ijfac.v4.i1.20

Minister of Environment and Forestry Regulation Number P.68/Minister of environment and forestry-Seketary general/2016

Adriansyah, E., Kasman, M., Prabasari, I.G., dan Permana, E (2019). "Korelasi Parameter Pencemar Fisika dan Mikrobiologi Dalam Leachate Dengan Response Surface Methodology. Jurnal Teknik Kimia, 25(3). 86-89. https://doi.org/10.36706/jtk.v25i3.132

Fadli, M., Herawati, P., Hadrah, Adriansyah, E., Sufra, R., & Syaiful, M. (2022). Analysis of Carbon Monoxide (CO) Quality Due to the Construction of the Miftahun Najah Islamic Boarding School. International Journal of Research in Vocational Studies (IJRVOCAS), 2(2), 36–40. https://doi.org/10.53893/ijrvocas.v2i2.101

Amuda, O.S. (2006). Removal of COD and Color from Sanitary Landfill Leachate by Using Coagulation – Fenton’s Process. Journal Application Science Environmental Management. Vol. 10 (2) 49 – 53.

Parsons, S. (2004). Advanced Oxidation Processes For Water and Wastewater treatment, IWA Publishing, London, UK

Ozturk, I., Altinbas, M., Koyuncu, I., Arikan, O., Gomec-Yangin, C. (2003). Advanced Physico-Chemical Treatment Experiences on Young Municipal Landfill Leachates. Journal Waste Management. 23 : 441–446.

Kang, Y.W. and Hwang, K.Y. (2000). Effects of Reaction Conditions on The Oxidation Efficiency In The Fenton Process. Water Res. Kidlington. 34: pp. 2786-2790.

Agustina, T.E. (2011). Pengolahan Air Limbah Pewarna Sintetis dengan Metode Adsorpsi Menggunakan Karbon Aktif, Jurnal Rekayasa Sriwijaya, 20(1), pp. 36-42.

Agustina, T.E. dan Muhammad Amir, (2012). Pengaruh Temperatur dan Waktu Pada Pengolahan Pewarna Sintetis Procion Menggunakan Reagen Fenton, Jurnal Rekayasa Sriwijaya, 20(1), pp. 36-42.

Gowda, S.T. and Yashaswini, (2018). Optimization of Fenton Process. International Journal of Advances In science Engineering and Technology, Bengaluru. 6, pp. 46-48.

Talebi, A., Norli, I. Tjoon, T.T., Abbas, F.M. and Alkarkhi. (2013). “Optimization of COD, Apparent Color, And Turbidity Reductions Of Landfill Leachate By Fenton Reagent”. Desalinations and Water Journal. 52: pp. 1524–1530.

Kocak, S. (2013). Treatment of Landfill Leachate by Advanced Oxidation Processes. Journal Environmental. 25(2): pp. 51‐64.

Agustina, T.E. (2016). Teknologi Pengolahan Limbah Cair Dengan Metode Oksidasi Lanjutan, Unsri Press, Palembang.

Yonar, T. (2011). Decolorization Of Textile Effluent Using Homogeneous Photochemical Oxidation Processes. Journal Coloration Technology. 121(5): pp. 258-264.

Gottschalk, C., Libra, J.A., and Saupe, A., (2010). Ozonation Of Water and Waste Water, 2nd Ed, Wiley-VCH, Verlag GmbH & Co, Weinheim.

E. Damanhuri, W. Handoko and T. Padmi. (2014). Municipal Solid Waste Management in Asia and The Pacific Islands, Springer, Singapore.

Sufra, R., Adriansyah, E., & Wati, L. A. (2023). Karbon aktif dari limbah kulit kayu sebagai penyerap logam Mangan ( Mn ) pada Leachate. 2(1), 13–16.

Sufra, R., Latifah, L., Susilo, N. A., Adriansyah, E., Wati, L. A., Yulia, A., Syaiful, M., Viareco, H., Marhadi, M., Ghony, M. A., & Herawati, P. (2023). Pemanfaatan Sisa Kulit Kayu sebagai Karbon Aktif dalam Pengolahan Air Lindi Industri Pulp and Paper. Jurnal Civronlit Unbari, 8(1), 17. https://doi.org/10.33087/civronlit.v8i1.106

Viareco, H., Adriansyah, E., & Sufra, R. (2023). Potential Sequencing Batch Reactor in Leachate Treatment for Organic and Nitrogen Removal Efficiency. JURNAL KESEHATAN LINGKUNGAN, 15(2), 143–151. https://doi.org/10.20473/jkl.v15i2.2023.143-151

Additional Files

Published

2023-08-25

How to Cite

Marhadi, Adriansyah, E., Herawati, P., Suzana, A., & Pratama, A. I. (2023). Decreasing pH, COD and TSS of Domestic Liquid Waste Using Photocatalysis TiO2 (Titanium Dioxide). International Journal of Research in Vocational Studies (IJRVOCAS), 3(2), 11–15. https://doi.org/10.53893/ijrvocas.v3i2.201