Generating Hydrogen Gas with a Polyvinyl Alcohol Membrane Dry Cell Electrolyzer Using KOH Electrolyte

Authors

  • Abdul Rohman Politeknik Negeri Sriwijaya
  • Rusdianasari Politeknik Negeri Sriwijaya
  • Aida Syarif Politeknik Negeri Sriwijaya

DOI:

https://doi.org/10.53893/ijrvocas.v4i2.291

Keywords:

Dry cell electrolyzer, hydrogen, KOH, Polyvinyl Alcohol Membrane

Abstract

Global environmental concerns requiring excellent air quality have prompted the development of a variety of eco-friendly energy sources. Hydrogen gas is an environmentally friendly option that may be created using an electrolysis device that converts water into hydrogen (H2) and oxygen (O2). In this study, a dry cell electrolyzer with a polyvinyl alcohol (PVA) membrane was used as a separator between two stainless steel 316 electrodes to generate a high hydrogen yield. The hydrogen gas production from the dry cell electrolyzer was determined using gas chromatography. The results showed that using a KOH electrolyte and a PVA membrane considerably enhanced the hydrogen gas composition. Hydrogen gas compositions after electrolysis using a dry cell electrolyzer without a PVA membrane and KOH electrolyte concentrations of 0 M, 0.04 M, 0.07 M, and 0.11 M being 13.70%, 25.10%, 32.50%, and 15.60%, respectively. With a PVA membrane, the hydrogen compositions were 71.50%, 89.10%, 80.50%, and 84.60%, respectively. The results of these experiments show that the most hydrogen gas was produced utilizing a dry cell electrolyzer with a PVA membrane and a 0.04 M KOH electrolyte concentration. When a PVA membrane and a KOH electrolyte are utilized in electrolysis, the hydrogen gas composition improves significantly compared to when either is utilized.

 

References

Reinhard, Ploetz., Rusdianasari, Rusdianasari., Eviliana, Eviliana. (2016). Renewable energy: advantages and disadvantages.

Muhammad, Amin., H., H., Shah., Bilal, Bashir., Umer, Hameed, Shah., Muhammad, Umair, Ali. (2023). Environmental Assessment of Hydrogen Utilization in Various Applications and Alternative Renewable Sources for Hydrogen Production: A Review. Energies, doi: 10.3390/en16114348

M.A.M., Cartaxo., José, Eduardo, Fernandes., Maésia, M., Soares, Gomes., al, et. (2023). Wastewater Electrolysis for Hydrogen Production. Portugaliae Electrochimica Acta, doi: 10.4152/pea.2023410105

Rusdianasari, Rusdianasari., Yohandri, Bow., Tresna, Dewi., Pola, Risma. (2019). Hydrogen Gas Production Using Water Electrolyzer as Hydrogen Power. doi: 10.1109/ICECOS47637.2019.8984438

Reinhard, P, Sihotang., Elsama, Christina, Manalu., Ryandi, Simbolon. (2022). Analysis of Separation of Hydrogen and Oxygen Gases from Water through Water Electrolysis Experiments. Indonesian Journal of Chemical Science and Technology, doi: 10.24114/ijcst.v5i1.33137

D. Irtas, Y. Bow, and Rusdianasari, “The Effect of Electric Current on the Production of Brown’s Gas using Hydrogen Fuel Generator with Seawater Electrolytes,” IOP Conf. Ser. Earth Environ. Sci., vol. 709, no. 1, 2021, doi: 10.1088/1755-1315/709/1/012001.

P. Haug, M. Koj, and T. Turek, “Influence of process conditions on gas purity in alkaline water electrolysis,” Int. J. Hydrogen Energy, vol. 42, no. 15, pp. 9406–9418, 2017, doi: 10.1016/j.ijhydene.2016.12.11 1.

S., Seetharaman., Subbiah, Ravichandran., D., J., Davidson., Subramanyan, Vasudevan., Ganapathy, Sozhan. (2011). Polyvinyl Alcohol Based Membrane as Separator for Alkaline Water Electrolyzer. Separation Science and Technology, doi: 10.1080/01496395.2011.575427

Nelson, Saksono., Johannes, Sasiang., Chandra, Dewi, Rosalina., Trisutanti, Budikania. (2018). Hydrogen Generation by Koh-Ethanol Plasma Electrolysis Using Double Compartement Reactor. doi: 10.1088/1757-899X/316/1/012011

Rusdianasari, R., Taqwa, A., Syarif, A., & Bow, Y. (2024). Integrated Wastewater Processing using Electrogoagulation Method into Oxyhydrogen (HHO) for Renewable Energy. IJFAC (Indonesian Journal of Fundamental and Applied Chemistry), 9(1), 48-54.

Rahmadina, N., Bow, Y., & Yusi, S. (2023). The Comparison of Hydrogen Purity on Brown’s Gas Using Dry Cell Electrolyzer with/without Polyvinyl Alcohol (PVA) Separator Membrane. International Journal of Research in Vocational Studies (IJRVOCAS), 3(2), 34-39.

B. Subramanian and S. Ismail, “Production and use of HHO gas in IC engines,” Int. J. Hydrogen Energy, vol. 43, no. 14, pp. 7140–7154, 2018, doi: 10.1016/j.ijhydene.2018.02.120.

M. Wang, Z. Wang, X. Gong, and Z. Guo, “The intensification technologies to water electrolysis for hydrogen production - A review,” Renew. Sustain. Energy Rev., vol. 29, pp. 573–588, 2014, doi: 10.1016/j.rser.2013.08.090.

A. Budiman, M. Yerizam, and Y. Bow, “Design of Dry Cell HHO Generator using NaCl Solution for Hydrogen Production,” pp. 8–15, 2021, doi: 10.24845/ijfac.v7.i1.8.

H. Teuku, I. Alshami, J. Goh, M. S. Masdar, and K. S. Loh, “Review on bipolar plates for low-temperature polymer electrolyte membrane water electrolyzer,” Int. J. Energy Res., vol. 45, no. 15, pp. 20583–20600, 2021, doi: 10.1002/er.7182.

Bow, Y., Meidinariasty, A., & Pratama, M. Y. (2021). Effect of Stainless Steel Duplex Electrode Size on Hydrogen Production through Electrolysis Process. In International Conference on Applied Science and Technology on Engineering Science. SCITEPRESS–Science and Technology Publications, Lda.

Yunwu, Yu., Peng, Lin., Ye, Zhao., Liu, Changwei., Changwei, Xu., Sun, Xiaowei., Lianjie, Liang., Junhai, Wang., Peng, Liu. (2020). Preparation and performance characterization of novel PVA blended with fluorinated polyimide membrane for gas separation. High Performance Polymers, doi: 10.1177/0954008320959708.

D. L. Hoskins, X. Zhang, M. A. Hickner, and B. E. Logan, “Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities,” Bioresour. Technol., vol. 172, pp. 156–161, 2014, doi: 10.1016/j.biortech.2014.09.004.

Rusdianasari, Iskandar, I., Basuki, PD., "Utilizing on Oxyhydrogen Reactor to Produce Hydrogen Gas in a New Source of Energy from Textile Effluent:, International Journal of Research In Vocational Studies, Vol. 2 No. 3, pp. 3 1-36, 2022, https://doi.org/10.53893/ijrvocas.v2i3.149

H. Teuku, I. Alshami, J. Goh, M. S. Masdar, and K. S. Loh, “Review on bipolar plates for low-temperature polymer electrolyte membrane water electrolyzer,” Int. J. Energy Res., vol. 45, no. 15, pp. 20583–20600, 2021, doi: 10.1002/er.7182.

R. Rusdianasari, Y. Bow, T. Dewi, A. Taqwa, and L. Prasetyani, “Effect of Sodium Chloride Solution Concentration on Hydrogen Gas Production in Water Electrolyzer Prototype,” 2019 Int. Conf. Technol. Policies Electr. Power Energy, TPEPE 2019, no. 3, pp. 3–8, 2019, doi: 10.1109/IEEECONF48524.2019.9102508

Rusdianasari., Ahmad, Taqwa., Aida, Syarif., Yohandri, Bow. (2023). Hydrogen Recovery from Electroplating Wastewater Electrocoagulation Treatment. International Journal on Advanced Science, Engineering and Information Technology, doi: 10.18517/ijaseit.13.2.16667

Rusdianasari, Y. Bow, and T. Dewi, “HHO Gas Generation in Hydrogen Generator using Electrolysis,” IOP Conf. Ser. Earth Environ. Sci., vol. 258, no. 1, 2019, doi: 10.1088/1755-1315/258/1/012007.

M. H. Lin, C. J. Huang, P. H. Cheng, J. H. Cheng, and C. C. Wang, “Revealing the effect of polyethylenimine on zinc metal anodes in alkaline electrolyte solution for zinc-air batteries: Mechanism studies of dendrite suppression and corrosion inhibition,” J. Mater. Chem. A, vol. 8, no. 39, pp. 20637–20649, 2020, doi: 10.1039/d0ta06929a.

Additional Files

Published

2024-08-31

How to Cite

Rohman, A., Rusdianasari, & Syarif, A. (2024). Generating Hydrogen Gas with a Polyvinyl Alcohol Membrane Dry Cell Electrolyzer Using KOH Electrolyte. International Journal of Research in Vocational Studies (IJRVOCAS), 4(2), 10–15. https://doi.org/10.53893/ijrvocas.v4i2.291

Most read articles by the same author(s)

1 2 > >>