Numerical Investigation of the Effect Infill from Different Unit cells Structure on Mechanical Behaviour

Authors

  • Imam Akbar Universitas Tridinanti
  • Martin Luther King Universitas Tridinanti
  • Zulkarnain Fatoni Universitas Tridinanti
  • Togar PO Sianipar Universitas Tridinanti
  • Sukarmansyah Universitas Tridinanti
  • Akbar Teguh Prakoso Universitas Sriwijaya

DOI:

https://doi.org/10.53893/ijrvocas.v3i1.168

Keywords:

Infill, Unit cells, Structure, Finite Element Method

Abstract

This study aims to identify the effect of infill on mechanical behaviour, especially the yield stress and modulus young of polylactide materials with different unit cell structures such as gyroid, diamond, square, and re-entrant but same porosity with value of 60%. Using Computational aided design (CAD) software and analyzed using the finite element method. The results show that the square structure has the highest strength in terms of mechanical behaviour such as yield stress with a value of 27 MPa, while the gyroid is 25.5 MPa, diamond is 25.3 MPa, re-entrant is 23.3 MPa and young modulus square is 2233MPa gyroid is 2199 MPa, diamond is 2195 MPa re- entrant 2182 MPa. In this study, it was also found that the thickness struth of the unit cell and modulus young had a very strong linear correlation with R2 = 0.96 which explains that the higher the thickness value, the higher the modulus young value. The results of this study also show that although lattice structures, especially square ones, have the highest value, TPMS structures, such as gyroids and diamonds, have more stable performance because these structures have an even stress distribution, thereby reducing the risk of failure of the structure. besides that, the researchers concluded that this TPMS can be used as a solution to improve structural performance.

Author Biographies

Imam Akbar, Universitas Tridinanti

 

 

Martin Luther King, Universitas Tridinanti

 

 

Zulkarnain Fatoni, Universitas Tridinanti

 

 

Togar PO Sianipar, Universitas Tridinanti

 

 

Sukarmansyah, Universitas Tridinanti

 

 

Akbar Teguh Prakoso, Universitas Sriwijaya

 

 

References

Mehrpouya, M.; Dehghanghadikolaei, A.; Fotovvati, B.; Vosooghnia, A.; Emamian, S. S.; Gisario, A. The Potential of Additive Manufacturing in the Smart Factory Industrial 4.0: A Review. Applied Sciences (Switzerland). 2019 https://doi.org/10.3390/app9183865

Akbar, I.; Prakoso, A. T.; Astrada, Y. M.; Sofyan Sinaga, M.; Ammarullah, M. I.; Adanta, D.; Mataram, A.; Syahrom, A.; Jamari, J.; Basri, H. Permeability Study of Functionally Graded Scaffold Based on Morphology of Cancellous Bone. Malaysian J. Med. Heal. Sci. 2021, 17, 60–6.

Ko, C. H. Constraints and Limitations of Concrete 3D Printing in Architecture. Journal of Engineering, Design and Technology. 2021 https://doi.org/10.1108/JEDT-11-2020-0456

Gupta, B.; Revagade, N.; Hilborn, J. Poly(Lactic Acid) Fiber: An Overview. Progress in Polymer Science (Oxford). 2007 https://doi.org/10.1016/j.progpolymsci.2007.01.005

Limmahakhun, S.; Oloyede, A.; Sitthiseripratip, K.; Xiao, Y.; Yan, C. Stiffness and Strength Tailoring of Cobalt Chromium Graded Cellular Structures for Stress-Shielding Reduction. Mater. Des. 2017, 114, 633–41. https://doi.org/10.1016/j.matdes.2016.11.090

Shubham, P.; Sikidar, A.; Chand, T. The Influence of Layer Thickness on Mechanical Properties of the 3D Printed ABS Polymer by Fused Deposition Modeling Thea Influence of Layer Thickness on Mechanical Properties of the 3D Printed ABS Polymer by Fused Deposition Modeling. 2016, No. August, 1–6. https://doi.org/10.4028/www.scientific.net/KEM.706.63

ERYILDIZ, M. Effect of Build Orientation on Mechanical Behaviour and Build Time of FDM 3D-Printed PLA Parts: An Experimental Investigation. Eur. Mech. Sci. 2021, 5, 116–20. https://doi.org/10.26701/ems.881254

Triyono, J.; Sukanto, H.; Saputra, R. M.; Smaradhana, D. F. The Effect of Nozzle Hole Diameter of 3D Printing on Porosity and Tensile Strength Parts Using Polylactic Acid Material. Open Eng. 2020, 10, 762–8. https://doi.org/10.1515/eng-2020-0083

Blok, L. G.; Longana, M. L.; Yu, H.; Woods, B. K. S. An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites. Addit. Manuf. 2018. https://doi.org/10.1016/j.addma.2018.04.039

Coppola, B.; Cappetti, N.; Maio, L. Di; Scarfato, P.; Incarnato, L. 3D Printing of PLA/Clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials (Basel). 2018. https://doi.org/10.3390/ma11101947

Fernandez-Vicente, M.; Calle, W.; Ferrandiz, S.; Conejero, A. Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Print. Addit. Manuf. 2016. https://doi.org/10.1089/3dp.2015.0036

Yarwindran, M.; Azwani Sa’aban, N.; Ibrahim, M.; Periyasamy, R. Thermoplastic Elastomer Infill Pattern Impact on Mechanical Properties 3D Printed Customized Orthotic Insole. ARPN J. Eng. Appl. Sci. 2016.

Ashcroft, I. A.; Mubashar, A. Numerical Approach: Finite Element Analysis. In Handbook of Adhesion Technology: Second Edition; 2018 https://doi.org/10.1007/978-3-319-55411-2_25

American Society for Testing and Materials. ASTM D638-14, Standard Practice for Preparation of Metallographic Specimens. ASTM Int. 2016, 82, 1–15. https://doi.org/10.1520/D0638-14.1

Reverte, J. M.; Caminero, M. ángel; Chacón, J. M.; García-Plaza, E.; Núñez, P. J.; Becar, J. P. Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique. Materials (Basel). 2020. https://doi.org/10.3390/MA13081924

Naghavi, S. A.; Tamaddon, M.; Marghoub, A.; Wang, K.; Babamiri, B. B.; Hazeli, K.; Xu, W.; Lu, X.; Sun, C.; Wang, L.; et al. Mechanical Characterisation and Numerical Modelling of TPMS-Based Gyroid and Diamond Ti6Al4V Scaffolds for Bone Implants: An Integrated Approach for Translational Consideration. Bioengineering 2022, 9,. https://doi.org/10.3390/bioengineering9100504

Ball, D. L.; Martinez, M.; Baldassarre, A.; Dubowski, D. M.; Carlson, S. S. Analytical and Experimental Investigation of Elastic-Plastic Strain Distributions at 2-D Notches. J. Test. Eval. 2021. https://doi.org/10.1520/JTE20190924

Ganeshkumar, S.; Kumar, S. D.; Magarajan, U.; Rajkumar, S.; Arulmurugan, B.; Sharma, S.; Li, C.; Ilyas, R. A.; Badran, M. F. Investigation of Tensile Properties of Different Infill Pattern Structures of 3D-Printed PLA Polymers: Analysis and Validation Using Finite Element Analysis in ANSYS. Materials (Basel). 2022, 15,. https://doi.org/10.3390/ma15155142

Veneziano, A.; Cazenave, M.; Alfieri, F.; Panetta, D.; Marchi, D. Novel Strategies for the Characterization of Cancellous Bone Morphology: Virtual Isolation and Analysis. Am. J. Phys. Anthropol. 2021, No. March, 1–11. https://doi.org/10.1002/ajpa.24272

da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) in Medical Implants and Theranostic Systems. Chem. Eng. J. 2018. https://doi.org/10.1016/j.cej.2018.01.010

Dezaki, M. L.; Mohd Ariffin, M. K. A. The Effects of Combined Infill Patterns on Mechanical Properties in Fdm Process. Polymers (Basel). 2020. https://doi.org/10.3390/polym12122792

Shah, G. J.; Nazir, A.; Lin, S.-C.; Jeng, J.-Y. Design for Additive Manufacturing and Investigation of Surface-Based Lattice Structures for Buckling Properties Using Experimental and Finite Element Methods. Materials (Basel). 2022, 15, 4037. https://doi.org/10.3390/ma15114037

Karimipour-Fard, P.; Behravesh, A. H.; Jones-Taggart, H.; Pop-Iliev, R.; Rizvi, G. Effects of Design, Porosity and Biodegradation on Mechanical and Morphological Properties of Additive-Manufactured Triply Periodic Minimal Surface Scaffolds. J. Mech. Behav. Biomed. Mater. 2020, 112, 104064. https://doi.org/10.1016/j.jmbbm.2020.104064

Additional Files

Published

2023-04-24

How to Cite

Akbar, I., King, M. L. ., Fatoni, Z. ., Sianipar, T. P. ., Sukarmansyah, & Prakoso, A. T. (2023). Numerical Investigation of the Effect Infill from Different Unit cells Structure on Mechanical Behaviour. International Journal of Research in Vocational Studies (IJRVOCAS), 3(1), 52–57. https://doi.org/10.53893/ijrvocas.v3i1.168