Analysis of System Degrees of Tilts of Solar Panel for Energy Utilization Using Solar Test Simulator

Authors

  • Cholish Politeknik Negeri Medan
  • Ibnu Hajar Politeknik Negeri Medan
  • Sharfina Faza Politeknik Negeri Medan
  • Zumhari Politeknik Negeri Medan
  • Abdul Azis Muhammadiyah University of North Sumatra
  • Faisal Irsan P Muhammadiyah University of North Sumatra
  • Abdullah Politeknik Negeri Medan

DOI:

https://doi.org/10.53893/ijrvocas.v2i4.192

Keywords:

Solar Panels, Solar Test Simulator, Angle of Incidence of The Sun, Tilt, Halogen Lamps

Abstract

The design of the Solar Panel Test Simulator by means of setting the solar panel placement stand so that the designed tool is able to provide a simulation of solar panel measurements based on actual conditions. The performance of the solar panels is shown through a monitor display placed on the design that will contain information about the solar panels as a whole. Limitations in placing the position of the solar panel will not provide a reference regarding measurement conditions based on the angle of incidence of the sun, so it is necessary to do further design regarding the position of the solar panel when the measurement is carried out. The development carried out in the design of this tool is in the form of setting the solar panel mount in the form of a solar panel mount tilt of 450, 900, 1350, and the distance of the halogen lamp 30cm as the energy source is measured. The measurement results are based on an average design temperature difference of 0.49% with a voltage of 1.55%.

 

Author Biographies

Cholish, Politeknik Negeri Medan

 

 

Ibnu Hajar, Politeknik Negeri Medan

 

 

Sharfina Faza, Politeknik Negeri Medan

 

 

Zumhari, Politeknik Negeri Medan

 

 

Abdul Azis, Muhammadiyah University of North Sumatra

 

 

Faisal Irsan P, Muhammadiyah University of North Sumatra

 

 

Abdullah, Politeknik Negeri Medan

 

 

References

Agostinelli, G., Batzner, DL, & Burgelman, M. (2002). An alternative model for V, G and T dependence of CdTe solar cells IV characteristics. Proceedings of the 29th IEEE Photovoltaic Specialists Conference, 6, 744–747.

Buchroithner, A., Gerl, B., Felsberger, R., & Wegleiter, H. (2021). Design and operation of a versatile, low-cost, high-flux solar simulator for automated CPV cell and module testing. Solar Energy, 228(August), 387–404. https://doi.org/10.1016/j.solener.2021.08.068.

Deepak, Srivastava, S., & Malvi, CS (2020). Light sources selection for solar simulators: A review. WEENTECH Proceedings in Energy, July, 28–46. https://doi.org/10.32438/wpe.060257.

Fauzi, F., Tajudin, MFN, Mohamed, MF, Azmi, A., & Manaf, NAA (2021). Assessment of in-house build low cost solar panel simulator. Journal of Physics: Conference Series, 1878(1). https://doi.org/10.1088/1742-6596/1878/1/012038.

Frolova, TI, Churyumov, GI, Vlasyuk, VM, & Kostylyov, VP (2019). Combined Solar Simulator for Testing Photovoltaic Devices. Proceedings - 2019 IEEE 1st Global Power, Energy and Communication Conference, GPECOM 2019, 276–280. https://doi.org/10.1109/GPECOM.2019.8778607.

Li, Q., Wang, J., Qiu, Y., Xu, M., & Wei, X. (2021). A modified indirect flux mapping system for high-flux solar simulators. Energy, 235, 121311. https://doi.org/10.1016/j.energy.2021.121311.

Liu, G., Ning, J., Gu, Z., & Wang, Z. (2021). Stability Test on Power Supply to the Xenon Lamp of Solar Simulator. Journal of Physics: Conference Series, 1820(1). https://doi.org/10.1088/1742-6596/1820/1/012142.

López-Fraguas, E., Sánchez-Pena, JM, & Vergaz, R. (2019). A Low-Cost LED-Based Solar Simulator. IEEE Transactions on Instrumentation and Measurement, 68(12), 4913–4923. https://doi.org/10.1109/TIM.2019.2899513.

Moria, H., Mohamad, TI, & Aldawi, F. (2016). Available online www.jsaer.com Research Article Radiation distribution uniformization by optimized halogen lamps arrangement for a solar simulator. 3(6), 29–34.

Quandt, A., & Warmbier, R. (2019). Solar cell simulations made easy. International Conference on Transparent Optical Networks, 2019-July, 1–4. https://doi.org/10.1109/ICTON.2019.8840329.

Rashid, MH (2007). Power Electronics Handbook. In Power Electronics Handbook. https://doi.org/10.1016/B978-0-12-088479-7.X5018-4.

Reichmuth, SK, Siefer, G., Schachtner, M., Muhleis, M., Hohl-Ebinger, J., & Glunz, SW (2020). Measurement Uncertainties in IV Calibration of Multi-junction Solar Cells for Different Solar Simulators and Reference Devices. IEEE Journal of Photovoltaics, 10(4), 1076–1083. https://doi.org/10.1109/JPHOTOV.2020.2989144.

Saadaoui, S., Torchani, A., Azizi, T., & Gharbi, R. (2014). Hybrid halogen-LED sources as an affordable solar simulator to evaluate Dye Sensitized Solar Cells. STA 2014 - 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, 884–887. https://doi.org/10.1109/STA.2014.7086810.

Severns, R., & Reduce, EMI (2006). Design of snubbers for power circuits. International Rectifier Corporation, I. http://www.electro-tech-online.com/custompdfs/2008/02/design.pdf.

Siregar, S., & Soegiarto, D. (2014). Solar panel and battery street light monitoring system using GSM wireless communication system. 2014 2nd International Conference on Information and Communication Technology, ICoICT 2014, 272–275. https://doi.org/10.1109/ICoICT.2014.6914078.

Situmorang, J., & Pasasa, LA (2011). Utilization of Solar Cell Characteristics as a Learning Media for Dynamic Electrical Physics. 2011(Snips), 22–23.

Søren Bækhøj Kjær, B. (2005). Aalborg Ph.D, Thesis - Design and Control of an Inverter for Photovoltaic Applications.

Tanesab, J., Ali, M., Parera, G., Mauta, J., & Sinaga, R. (2019). A Modified Halogen Solar Simulator. https://doi.org/10.4108/eai.18-10-2019.2289851.

Tavakoli, M., Jahantigh, F., & Zarookian, H. (2021). Adjustable high-power-LED solar simulator with extended spectrum in UV region. Solar Energy, 220(February), 1130–1136. https://doi.org/10.1016/j.solener.2020.05.081.

Wang, S., Jiang, W., & Lin, Z. (2015). Practical photovoltaic simulator with a cross tackling control strategy based on the first-hand duty cycle processing. Journal of Power Electronics, 15(4), 1018–1025. https://doi.org/10.6113/JPE.2015.15.4.1018.

Wang, W., & Laumert, B. (2014). Simulate a 'Sun' for Solar Research: A Literature Review of Solar Simulator Technology. 1–37.

Additional Files

Published

2023-01-30

How to Cite

Cholish, Hajar, I., Faza, S., Zumhari, Azis, A., Irsan P, F., & Abdullah. (2023). Analysis of System Degrees of Tilts of Solar Panel for Energy Utilization Using Solar Test Simulator. International Journal of Research in Vocational Studies (IJRVOCAS), 2(4), 173–179. https://doi.org/10.53893/ijrvocas.v2i4.192

Most read articles by the same author(s)