The Comparison of Hydrogen Purity on Brown’s Gas Using Dry Cell Electrolyzer with/without Polyvinyl Alcohol (PVA) Separator Membrane

Authors

  • Nisa Rahmadina Politeknik Negeri Sriwijaya
  • Yohandri Bow Politeknik Negeri Sriwijaya
  • Syahirman Yusi Politeknik Negeri Sriwijaya

DOI:

https://doi.org/10.53893/ijrvocas.v3i2.205

Keywords:

brown's gas, electrolyte, electrolysis, hydrogen

Abstract

Global environmental issues that demand good air quality have encouraged various energy sources to develop environmentally friendly energy. Brown’s Gas is produced by using an electrolysis system to separate water into Hydrogen (H2) and Oxygen (O2) gas. The dry cell is an electrolyzer that is widely used for both small and large-scale hydrogen production systems. A dry cell electrolyzer was designed with 12 stages of 316 stainless steel with Polyvinyl Alcohol as a polymer membrane to prevent mixing H2 and O2 to get a high percentage of hydrogen purity. This study compares hydrogen purity on Brown’s gas using a dry cell electrolyzer with PVA with/without a PVA separator membrane. The result shows that the PVA membrane significantly impacted hydrogen purity. The hydrogen purity on Brown’s gas without PVA membrane for KOH, NaOH, KCl, and Seawater was 58.37%, 56.42 %, 50.16%, and 55.22 %. Compared to using the membrane was 78.32%, 77.80%, 63.16%, and 74.0 %, with the highest hydrogen obtained was KOH electrolyte.

References

K. Praveen and M. Sethumadhavan, “On the extension of XOR step construction for optimal contrast grey level visual cryptography,” 2017 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2017, vol. 2017-Janua, pp. 219–222, 2017, doi: 10.1109/ICACCI.2017.8125843.

A. Ronzino et al., “The energy efficiency management at urban scale by means of integrated modelling.,” Energy Procedia, vol. 83, pp. 258–268, 2015, doi: 10.1016/j.egypro.2015.12.180.

D. Irtas, Y. Bow, and Rusdianasari, “The Effect of Electric Current on the Production of Brown’s Gas using Hydrogen Fuel Generator with Seawater Electrolytes,” IOP Conf. Ser. Earth Environ. Sci., vol. 709, no. 1, 2021, doi: 10.1088/1755-1315/709/1/012001.

P. Haug, M. Koj, and T. Turek, “Influence of process conditions on gas purity in alkaline water electrolysis,” Int. J. Hydrogen Energy, vol. 42, no. 15, pp. 9406–9418, 2017, doi: 10.1016/j.ijhydene.2016.12.111.

P. Polverino, F. D’Aniello, I. Arsie, and C. Pianese, “Study of the energetic needs for the on-board production of Oxy-Hydrogen as fuel additive in internal combustion engines,” Energy Convers. Manag., vol. 179, no. September 2018, pp. 114–131, 2019, doi: 10.1016/j.enconman.2018.09.082.

R. Rusdianasari, Y. Bow, T. Dewi, A. Taqwa, and L. Prasetyani, “Effect of Sodium Chloride Solution Concentration on Hydrogen Gas Production in Water Electrolyzer Prototype,” 2019 Int. Conf. Technol. Policies Electr. Power Energy, TPEPE 2019, no. 3, pp. 3–8, 2019, doi: 10.1109/IEEECONF48524.2019.9102508.

M. H. Sellami and K. Loudiyi, “Electrolytes behavior during hydrogen production by solar energy,” Renew. Sustain. Energy Rev., no. July, pp. 0–1, 2016, doi: 10.1016/j.rser.2016.12.034.

A. Syakdani, Y. Bow, Rusdianasari, and M. Taufik, “Analysis of Cooler Performance in Air Supply Feed for Nitrogen Production Process Using Pressure Swing Adsorption (PSA) Method,” J. Phys. Conf. Ser., vol. 1167, no. 1, 2019, doi: 10.1088/1742-6596/1167/1/012055.

Z. Zakaria and S. K. Kamarudin, “A review of alkaline solid polymer membrane in the application of AEM electrolyzer: Materials and characterization,” Int. J. Energy Res., vol. 45, no. 13, pp. 18337–18354, 2021, doi: 10.1002/er.6983.

R. Nagarkar and J. Patel, “Acta Scientific Pharmaceutical Sciences (ISSN: 2581-5423) Polyvinyl Alcohol: A Comprehensive Study,” vol. 3, no. 4, pp. 34–44, 2019.

M. H. Lin, C. J. Huang, P. H. Cheng, J. H. Cheng, and C. C. Wang, “Revealing the effect of polyethylenimine on zinc metal anodes in alkaline electrolyte solution for zinc-air batteries: Mechanism studies of dendrite suppression and corrosion inhibition,” J. Mater. Chem. A, vol. 8, no. 39, pp. 20637–20649, 2020, doi: 10.1039/d0ta06929a.

B. Subramanian and S. Ismail, “Production and use of HHO gas in IC engines,” Int. J. Hydrogen Energy, vol. 43, no. 14, pp. 7140–7154, 2018, doi: 10.1016/j.ijhydene.2018.02.120.

E. Maican et al., “Hybrid renewable energy systems for isolated farms. A review,” INMATEH - Agric. Eng., vol. 59, no. 3, pp. 77–92, 2019, doi: 10.35633/INMATEH-59-09.

M. Wang, Z. Wang, X. Gong, and Z. Guo, “The intensification technologies to water electrolysis for hydrogen production - A review,” Renew. Sustain. Energy Rev., vol. 29, pp. 573–588, 2014, doi: 10.1016/j.rser.2013.08.090.

A. Budiman, M. Yerizam, and Y. Bow, “Design of Dry Cell HHO Generator using NaCl Solution for Hydrogen Production,” pp. 8–15, 2021, doi: 10.24845/ijfac.v7.i1.8.

H. Teuku, I. Alshami, J. Goh, M. S. Masdar, and K. S. Loh, “Review on bipolar plates for low-temperature polymer electrolyte membrane water electrolyzer,” Int. J. Energy Res., vol. 45, no. 15, pp. 20583–20600, 2021, doi: 10.1002/er.7182.

A. Kovač, D. Marciuš, and L. Budin, “Solar hydrogen production via alkaline water electrolysis,” Int. J. Hydrogen Energy, vol. 44, no. 20, pp. 9841–9848, 2019, doi: 10.1016/j.ijhydene.2018.11.007.

Rusdianasari, Y. Bow, T. Dewi, and P. Risma, “Hydrogen Gas Production Using Water Electrolyzer as Hydrogen Power,” ICECOS 2019 - 3rd Int. Conf. Electr. Eng. Comput. Sci. Proceeding, no. 4, pp. 127–131, 2019, doi: 10.1109/ICECOS47637.2019.8984438.

L. Gustavo, M. Vieira, and R. Damasceno, “ScienceDirect Hydrogen production by a low-cost electrolyzer developed through the combination of alkaline water electrolysis and solar energy use,” vol. 3, pp. 0–10, 2018, doi: 10.1016/j.ijhydene.2018.01.051.

M. J. González-Pabón, R. Cardeña, E. Cortón, and G. Buitrón, “Hydrogen production in two-chamber MEC using a low-cost and biodegradable poly(vinyl) alcohol/chitosan membrane,” Bioresour. Technol., vol. 319, no. September 2020, 2021, doi: 10.1016/j.biortech.2020.124168.

K. Rajagukguk, “Pengolahan Limbah Cair Tahu Menjadi Biogas Menggunakan Reaktor Biogas Portabel,” Quantum Tek. J. Tek. Mesin Terap., vol. 1, no. 2, pp. 63–71, 2020, doi: 10.18196/jqt.010210.

D. L. Hoskins, X. Zhang, M. A. Hickner, and B. E. Logan, “Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities,” Bioresour. Technol., vol. 172, pp. 156–161, 2014, doi: 10.1016/j.biortech.2014.09.004.

Rusdianasari, Y. Bow, and T. Dewi, “HHO Gas Generation in Hydrogen Generator using Electrolysis,” IOP Conf. Ser. Earth Environ. Sci., vol. 258, no. 1, 2019, doi: 10.1088/1755-1315/258/1/012007.

M. A. El Kady, A. El Fatih Farrag, M. S. Gad, A. K. El Soly, and H. M. Abu Hashish, “Parametric study and experimental investigation of hydroxy (HHO) production using dry cell,” Fuel, vol. 282, no. May, p. 118825, 2020, doi: 10.1016/j.fuel.2020.118825.

A. Valente, D. Iribarren, and J. Dufour, “End of life of fuel cells and hydrogen products: From technologies to strategies,” Int. J. Hydrogen Energy, vol. 44, no. 38, pp. 20965–20977, 2019, doi: 10.1016/j.ijhydene.2019.01.110.

A. N. Colli, H. H. Girault, and A. Battistel, “Non-precious electrodes for practical alkaline water electrolysis,” Materials (Basel)., vol. 12, no. 8, pp. 1–17, 2019, doi: 10.3390/ma12081336.

Rusdianasari, A Taqwa, A Syarif, and Y Bow, "Hydrogen Recovery from Electroplating Wastewater Electrocoagulation Treatment", International Journal on Advanced Science Engineering Information Technology, Vol. 3 No. 2, pp. 592-598, 2023, DOI:10.18517/ijaseit.13.2.16667

Bow, Y., Rusdianasari, ., Meidinariasty, A. and Yori Pratama, M., "Effect of Stainless Steel Duplex Electrode Size on Hydrogen Production through Electrolysis Process", In Proceedings of the 4th International Conference on Applied Science and Technology on Engineering Science (iCAST-ES 2021), pp. 393-397, 2023, DOI: 10.5220/0010946400003260

Rusdianasari, Iskandar, I., Basuki, PD., "Utilizing on Oxyhydrogen Reactor to Produce Hydrogen Gas in a New Source of Energy from Textile Effluent:, International Journal of Research In Vocational Studies, Vol. 2 No. 3, pp. 31-36, 2022, https://doi.org/10.53893/ijrvocas.v2i3.149

Additional Files

Published

2023-08-25

How to Cite

Rahmadina, N., Bow, Y., & Yusi, S. (2023). The Comparison of Hydrogen Purity on Brown’s Gas Using Dry Cell Electrolyzer with/without Polyvinyl Alcohol (PVA) Separator Membrane. International Journal of Research in Vocational Studies (IJRVOCAS), 3(2), 34–39. https://doi.org/10.53893/ijrvocas.v3i2.205

Most read articles by the same author(s)