Combine Improvement for Dye-Sensitized Solar Cells

Characterization of Metal Oxide-Doped TiO2 Nanoparticles Integrated with Clitoria Ternatea Extract

Authors

  • Ronaldo Politeknik Negeri Sriwijaya
  • Rusdianasari Politeknik Negeri Sriwijaya
  • Abu Hasan Politeknik Negeri Sriwijaya

DOI:

https://doi.org/10.53893/ijrvocas.v4i2.292

Keywords:

Clitoria Ternatea, Photoanode, DSSC, Metal Oxide

Abstract

Dye Sensitized-Solar Cells (DSSC) represent a third-generation solar cell technology based on photoelectrochemical principles. This study explores the use of Clitoria ternatea (butterfly pea) extract as an organic dye for DSSCs, focusing on its ability to absorb sunlight effectively. Excitation of electrons triggered by light in photocatalysis is strongly influenced by the position of the band gap. To be effective as a photocatalyst, the material must have a conduction band with a high positive potential compared to the electron accepting potential. Doping metal oxides such as CuO, MgO, Fe2O3, and ZnO into TiO2 can change the band edge properties or surface states which can increase light absorption. This research presents the synthesis of TiO2 nanoparticles as photoanodes doped using metal oxides to evaluate characteristic that can influence DSSC performance. TiO2 nanoparticles doped with metal oxide were synthesized using the solvothermal method and characterized by XRD, SEM-EDX, FTIR, and UV-Vis. Comprehensive analysis of samples doped with metal oxides significantly affects the crystal structure, morphology, elemental composition, and optical properties of the material. The results showed that Cu-doped TiO2 samples allowed for the most significant performance improvement in DSSC, followed by Fe-doped TiO2, Mg-doped TiO2, and Zn-doped TiO2, with pure TiO2 having the lowest performance potential. These results provide important insights into material optimization to improve DSSC efficiency.

References

R. Ploetz, “Renewable Energy: Advantages and Disadvantages,” Walsrode, 2016.

V. Madurai Ramakrishnan et al., “Performance of TiO2 nanoparticles synthesized by microwave and solvothermal methods as photoanode in dye-sensitized solar cells (DSSC),” Int J Hydrogen Energy, vol. 45, no. 51, pp. 27036–27046, Oct. 2020, doi: 10.1016/j.ijhydene.2020.07.018.

A. Hayat, A. E. E. Putra, N. Amaliyah, and S. S. Pandey, “Clitoria ternatea flower as natural dyes for Dye-sensitized solar cells,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Oct. 2019. doi: 10.1088/1757-899X/619/1/012049.

M. S. Ahmad, A. K. Pandey, N. A. Rahim, S. Shahabuddin, and S. K. Tyagi, “Chemical sintering of TiO2 based photoanode for efficient dye sensitized solar cells using Zn nanoparticles,” Ceram Int, vol. 44, no. 15, pp. 18444–18449, Oct. 2018, doi: 10.1016/j.ceramint.2018.07.062.

F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. Şen, “Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells,” J Mol Liq, vol. 299, Feb. 2020, doi: 10.1016/j.molliq.2019.112177.

R. Musiana, A. Hasan, and R. D. Kusumanto, “Titanium Dioxide Soaking Time Effects on DSSC Powers and Efficiency,” 2021.

Y. Nadhirah, R. Kusumanto, and A. Hasan, “Increasing Efficiency of Dye-Sensitized Solar Cell (DSSC) Originating from Yellow Sweet Potato Extract as Dye Sensitizer: Effect of Acetic Acid, Polyethylene Glycol, and Polyvinyl Alcohol as TiO2 binders,” Jurnal Kimia Sains dan Aplikasi, vol. 23, no. 11, pp. 403–408, Nov. 2020, doi: 10.14710/jksa.23.11.403-408.

R. S. Dubey, K. V. Krishnamurthy, and S. Singh, “Experimental studies of TiO2 nanoparticles synthesized by sol-gel and solvothermal routes for DSSCs application,” Results Phys, vol. 14, Sep. 2019, doi: 10.1016/j.rinp.2019.102390.

K. Athira, K. T. Merin, T. Raguram, and K. S. Rajni, “Synthesis and characterization of Mg doped TiO2 nanoparticles for photocatalytic applications,” Mater Today Proc, vol. 33, pp. 2321–2327, 2020, doi: 10.1016/j.matpr.2020.04.580.

S. Mehraz, P. Kongsong, A. Taleb, N. Dokhane, and L. Sikong, “Large scale and facile synthesis of Sn doped TiO2 aggregates using hydrothermal synthesis,” Solar Energy Materials and Solar Cells, vol. 189, pp. 254–262, Jan. 2019, doi: 10.1016/j.solmat.2017.06.048.

M. Shakeel Ahmad, A. K. Pandey, and N. A. Rahim, “Towards the plasmonic effect of Zn nanoparticles on TiO2 monolayer photoanode for dye sensitized solar cell applications,” Mater Lett, vol. 195, pp. 62–65, May 2017, doi: 10.1016/j.matlet.2017.02.099.

X. J. Yang, S. Wang, H. M. Sun, X. B. Wang, and J. S. Lian, “Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 25, no. 2, pp. 504–509, Feb. 2015, doi: 10.1016/S1003-6326(15)63631-7.

J. Wang et al., “The effects of additive on properties of Fe doped TiO2 nanoparticles by modified sol-gel method,” J Alloys Compd, vol. 858, Mar. 2021, doi: 10.1016/j.jallcom.2020.157726.

N. Rathore, R. K. Shukla, K. C. Dubey, and A. Kulshreshtha, “Synthesis of undoped and Fe doped nanoparticles of TiO2via co-precipitation technique and their characterizations,” in Materials Today: Proceedings, Elsevier Ltd, 2019, pp. 861–865. doi: 10.1016/j.matpr.2020.05.072.

N. Kanjana, W. Maiaugree, P. Poolcharuansin, and P. Laokul, “Synthesis and characterization of Fe-doped TiO2 hollow spheres for dye-sensitized solar cell applications,” Mater Sci Eng B Solid State Mater Adv Technol, vol. 271, Sep. 2021, doi: 10.1016/j.mseb.2021.115311.

S. M. Amir-Al Zumahi et al., “Understanding the optical behaviours and the power conversion efficiency of novel organic dye and nanostructured TiO2 based integrated DSSCs,” Solar Energy, vol. 225, pp. 129–147, Sep. 2021, doi: 10.1016/j.solener.2021.07.024.

M. Yahya, A. Bouziani, C. Ocak, Z. Seferoğlu, and M. Sillanpää, “Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions,” Dyes and Pigments, vol. 192. Elsevier Ltd, Aug. 01, 2021. doi: 10.1016/j.dyepig.2021.109227.

I. Izirwan, T. D. Munusamy, N. H. Hamidi, and S. Z. Sulaiman, “Optimization of microwave-assisted extraction of anthocyanin from clitoria ternatea flowers,” International Journal of Mechanical Engineering and Robotics Research, vol. 9, no. 9, pp. 1246–1252, Sep. 2020, doi: 10.18178/ijmerr.9.9.1246-1252.

S. Shalini, R. Balasundara Prabhu, S. Prasanna, T. K. Mallick, and S. Senthilarasu, “Review on natural dye sensitized solar cells: Operation, materials and methods,” Renewable and Sustainable Energy Reviews, vol. 51. Elsevier Ltd, pp. 1306–1325, Aug. 01, 2015. doi: 10.1016/j.rser.2015.07.052.

N. A. Karim, U. Mehmood, H. F. Zahid, and T. Asif, “Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs),” Solar Energy, vol. 185. Elsevier Ltd, pp. 165–188, Jun. 01, 2019. doi: 10.1016/j.solener.2019.04.057.

L. Zhou et al., “Improved performance of dye sensitized solar cells using Cu-doped TiO2 as photoanode materials: Band edge movement study by spectroelectrochemistry,” Chem Phys, vol. 475, pp. 1–8, Aug. 2016, doi: 10.1016/j.chemphys.2016.05.018.

J. E. Ikpesu, S. E. Iyuke, M. Daramola, and A. O. Okewale, “Synthesis of improved dye-sensitized solar cell for renewable energy power generation,” Solar Energy, vol. 206. Elsevier Ltd, pp. 918–934, Aug. 01, 2020. doi: 10.1016/j.solener.2020.05.002.

Additional Files

Published

2024-08-31

How to Cite

Ronaldo, Rusdianasari, & Hasan, A. (2024). Combine Improvement for Dye-Sensitized Solar Cells: Characterization of Metal Oxide-Doped TiO2 Nanoparticles Integrated with Clitoria Ternatea Extract. International Journal of Research in Vocational Studies (IJRVOCAS), 4(2), 01–09. https://doi.org/10.53893/ijrvocas.v4i2.292

Most read articles by the same author(s)

1 2 > >>